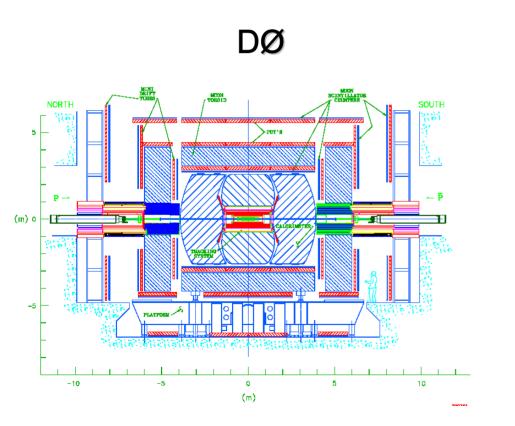
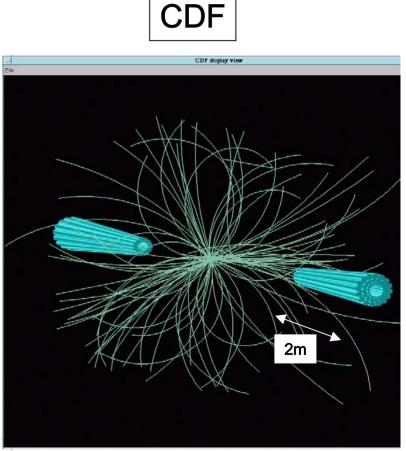

Uncertainties of L measurement at the Tevatron

Sergey Klimenko, University of Florida

- Tevatron Luminosity
- □ Reference process
 - > Inelastic ppbar scattering
 - ✓ Problem with the value of the inelastic x-section
 - ✓ Analysis of the CDF and E811 measurements
 - ✓ Average inelastic x-section
 - > W/Z production
- Summary

Tevatron Luminosity in Run II





Current peak Luminosity ~4*10³¹cm⁻²sec⁻¹

CDF & DO

☐ L uncertainty is one of dominant systematic errors for measurement of x-sections.

Reference process: inelastic PPbar scattering

> Luminosity measurement

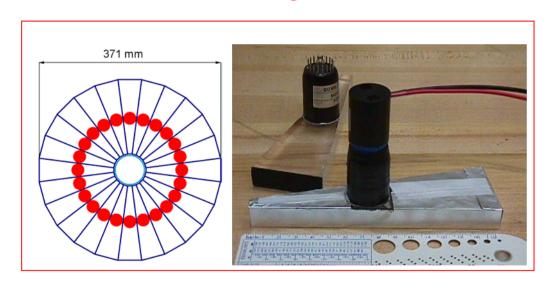
$$R_{pp} = \mu_{pp} \cdot f_{BC} = \sigma_{inel} \cdot \mathcal{E}_{pp} \cdot \delta(L) \cdot L$$

$$L - \text{luminosity} \qquad \sigma_{inel} - \text{inelastic x-section}$$

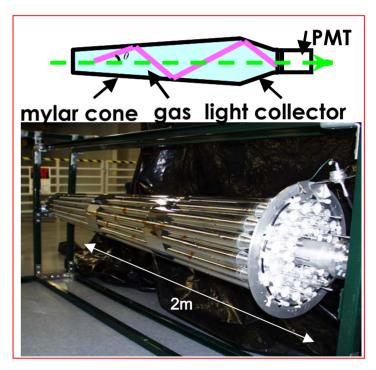
$$\epsilon_{pp} - \text{acceptance for a single pp}$$

$$\mu_{a} - \text{# of pp /BC} \qquad \delta(L) - \text{detector non-linearity}$$

CDF established uncertainties


$$\varepsilon_{pp}(4\%)$$
 and R_{pp} (1.8%)

- What is uncertainty on the inelastic x-section?
 - \triangleright In Run I CDF used the CDF measurement of σ_{in} .
 - > DØ used the average of CDF, E811 and E710 measurements.


Measurement of inelastic rates

- ☐ Standalone L monitors @ small angles
- ☐ Large acceptance (~97% for HC ppbar)

DØ scintillating counters

CDF Cherenkov counters

CDF Luminosity Uncertainty

Systematic error	2 layers
CLC acceptance (2 layers):	4.0 %
Geometry & material	3.0 %
Event generator	2.0 %
Beam	1.0 %
CLC simulation	1.0 %
amplitude calibration	1.0 %
Detector stability	1.0 %
Online → offline transfer (accounting)	~ 0 %
Luminosity method	1.0 %
Losses	<1.0 %
TOTAL	4.4%

The error due to uncertainties in the inelastic x-section is not quoted.

inelastic Ppbar x-section

L independent measurement of total PPbar x-section

$$(1+\rho^2) \cdot \sigma_{tot} = 16\pi (\hbar c)^2 \frac{dN_{el}/dt|_{t\to 0}}{N_{el} + N_{inel}} \qquad \rho = 0.135$$

➤ Inelastic cross-section @ 1.8TeV

```
\checkmark 55.50 ± 2.20 mb (E710: Phys.Rev.Let, 68, p2433, 1992)
```

$$\checkmark$$
 60.33 ± 1.40 mb (CDF: Phys.Rev.D, 50, p5550, 1994)

$$\checkmark$$
 55.92 ± 1.19 mb (E811: Phys.Let.B, 445, p419, 1999)

measured using the optical theorem, along with the total & elastic x-sections

What σ_{inel} to use? Run I: CDF(BBC), DØ(world); Run II (CDF&E811?)

What is the error for σ_{inel} ? CDF&E811 combined: ~4%

- → "poor agreement" between all three measurements.
- \rightarrow For Run II CDF & DØ do not quote the error associated with σ_{inel} yet
- → Joint committee is working on this issue

Do CDF and E811 disagree?

 \Box $\sigma_{in}(CDF)$ and $\sigma_{in}(E811)$ are compatible at 2.3 σ .

$$\sigma_{tot} = 16\pi (hc)^2 \frac{b}{1+\rho^2} \frac{N_{el}}{N_{el} + N_{in}} \qquad b = \frac{1}{N_{el}} \frac{dN_{el}}{dt} \Big|_{t \to 0}$$

$$\sigma_{in} = 16\pi (hc)^2 \frac{b}{1+\rho^2} \frac{N_{el}N_{in}}{(N_{el}+N_{in})^2} = 16\pi (hc)^2 \frac{b}{1+\rho^2} \frac{R}{(1+R)^2}$$

- E811 used the same value of *b*
- ☐ Therefore compare the ratio of the inelastic and elastic rates

	CDF	E811
N_{el}	78691 ± 1463	$508.1K \pm 3.5K$
N_{in}	240982 ± 2967	$1799.5K \pm 57.2K$
R	3.062 ± 0.068	3.542 ± 0.113
b	16.98 ± 0.25	16.98 ± 0.22

Discrepancy for R at 3.6 standard deviations!

"Single diffractive rate problem"

Rates measured by CDF:

- a) elastic-N_{el}, b) double_arm-N₂ c) single_arm X p N_{sd}
- ☐ Rates measured by E811:
 - a) elastic-N_{el}, b) double_arm-N₂ c) single_arm N₁

$$x = \frac{N_2}{N_{el}}, \qquad y = \frac{N_1}{N_{el}}, \qquad R = x + y$$

	CDF	E811
x	2.638 ± 0.058	2.657 ± 0.023
y	0.424 ± 0.021	0.885 ± 0.115

"obvious" conclusion: "E811 measures too many single diffractive events". Why? "E811 has a background of 93% in single arm rate. Quite possible it was incorrectly estimated"

wrong conclusion, because CDF and E811 detector acceptances are different

What is the problem?

■ Need to compare the number of "non-diffractive" and single diffractive events corrected for acceptances.

$$\varepsilon_2(CDF) \approx 98.7\%, \qquad \varepsilon_2(E811) = 88.85 \pm 2.0\%$$

□ The E811 single-arm rate had a lot of "non-diffractive" events missed by the two-side inelastic trigger

$$N_{nd} = N_2 / \varepsilon_2, \quad N_{sd} = N_2 (r + \delta - \frac{1 - \varepsilon_2}{\varepsilon_2}).$$

r and δ were measured in a special run

	CDF	E811
N_{nd}	203200 ± 2558	$1519.7K \pm 34.9K$
N_{sd}	37782 ± 1770	$279.8K \pm 36.3K$
N_{nd}/N_{el}	2.582±0.058	2.991±0.069
N_{sd}/N_{el}	0.480 ± 0.029	0.551±0.072
N_{sd}/N_{nd}	0.186 ± 0.009	0.184 ± 0.024

Conclusion: the CDF and E811 single diffractive rate seems to be consistent.

We can't isolate the problem.

S.Klimenko CTEQ 05/02/03 Fermilab

How to average the x-section?

- □ To average two incompatible measurements X_1 and X_2 we have to ignore the accurate error analysis done by both experiments and inflate the systematic error.
- Procedure:
 - Find average value:
 by minimization of its variance:

$$\overline{R} = fX_1 + (1 - f)X_2$$
$$\operatorname{var}(\overline{X}) = FCF^T, \quad F = (f, 1 - f)$$

covariance matrix:

$$C = \begin{bmatrix} \sigma_1^2 & \sigma_1 \sigma_2 \alpha \\ \sigma_1 \sigma_2 \alpha & \sigma_2^2 \end{bmatrix}$$

$$\chi^{2} = \sum \frac{(X_{i} - \overline{X})}{\sigma_{i}} C_{ij}^{-1} \frac{(X_{j} - \overline{X})}{\sigma_{i}}$$

 \rightarrow If $\chi 2$ indicates disagreement \rightarrow inflate the average variance

$$\operatorname{var}(\overline{X}) \Rightarrow \operatorname{var}(\overline{X}) \cdot \chi^2$$

Averaging of R

- □ Average R and calculate x-sections using $\sigma_{in} = 16\pi (hc)^2 \frac{b}{1+\rho^2} \frac{R}{(1+\overline{R})^2}$
- Method A: ignore correlation between b and $R \rightarrow \alpha = 0$. average R = 3.19 ± 0.06, $\chi 2 = 13.2 \rightarrow \text{average R} = 3.19 \pm 0.21$ $\overline{\sigma}_{in} \cdot (1 + \rho^2) = 60.4 \pm 2.3 mb$

 $lue{}$ Method B: estimate lpha from simulation assuming gaussian errors and

$$R = \frac{N_{in}}{n_{el}} \left(\exp(-bt_{\min}) - \exp(-bt_{\max}) \right)$$

 α =-0.09, average R = 3.20 ± 0.06, χ 2 = 12.3 \rightarrow average R = 3.20 ± 0.20

$$\overline{\sigma}_{in} \cdot (1 + \rho^2) = 60.3 \pm 2.2 mb$$

Averaging of x-sections itself

	CDF	E811
Quoted σ_{tot} , mb	80.03 ± 2.25	71.71 ± 2.02
Derived $\sigma_{tot}(R,b)$ mb	80.03 ± 2.17	71.70 ± 1.90
Quoted $\sigma_{i\sigma}$ mb	60.33 ± 1.40	55.92 ± 1.19
Derived $\sigma_{in}(R,b)$ mb	60.32 ± 1.34	55.90 ± 1.15

- Method C: Average total and inelastic x-sections using their functional dependence on b for estimation of non-diagonal covariance term.
- Total x-section: $\alpha = 0.23$, $\chi 2 = 8.6 \Rightarrow \overline{\sigma}_{tot} \cdot (1 + \rho^2) = 76.8 \pm 4.7 mb$
- □ Inelastic x-section: α =0.41, χ 2 = 6.6 \rightarrow $\overline{\sigma}_{in} \cdot (1 + \rho^2) = 58.8 \pm 2.7 mb$
 - → Poor agreement for inelastic x-section with CL=1%
 - \rightarrow require estimation of α , which is not quoted anywhere.

Conclusion on the value of inelastic x-section

	$\overline{\sigma}_{in} \cdot (1 + \rho^2)$	$\overline{\sigma}_{tot} \cdot (1 + \rho^2)$
Method A	$60.4 \pm 2.3 \text{ mb}$	$79.3 \pm 4.2 \text{ mb}$
Method B	$60.3 \pm 2.2 \text{ mb}$	$79.1 \pm 4.0 \text{ mb}$
Method C	$58.8 \pm 2.4 \text{ mb}$	$76.8 \pm 4.3 \text{ mb}$

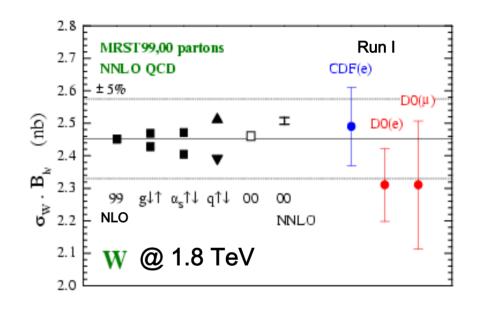
- CDF uses method A (simple average of the rate ratios)
 - > averages actually measured numbers
 - > agrees with method B
 - > based on quoted numbers only

$$\overline{\sigma}_{in}(B) = 59.3 \pm 2.3 mb$$
 for $\rho = 0.135$ and @ 1.8 TeV

D0 prefers method C (close to a median between CDF and E811)

$$\overline{\sigma}_{in}(B) = 57.7 \pm 2.4 mb$$
 for $\rho = 0.135$ and @ 1.8 TeV

Extrapolation to 1.96 TeV


- **□** Energy dependence
 - \triangleright prediction for inelastic x-section: $\sim \ln^2(s)$
 - prediction for diffractive x-section: ~ln(s)
 - **► E710 and E811 favor** : ~ln(s)
 - \triangleright best fit for total x-section: $\sim \ln^{2.2}$ s
- Assuming ln²(s) dependence and additional 1% systematic error due to uncertainty of the inelastic x-section energy dependence, the inelastic x-section at 1.96 TeV is

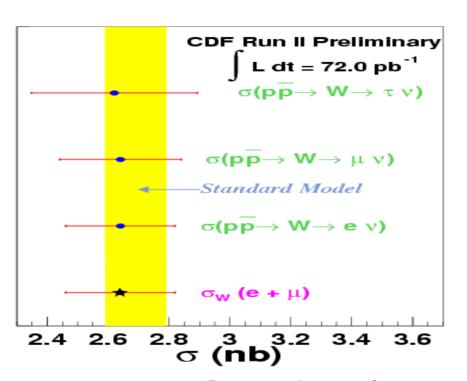
add 2.4%

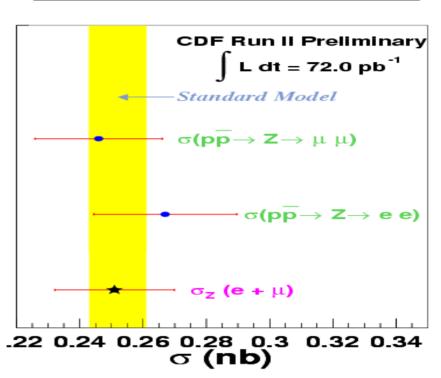
$$\overline{\sigma}_{in} = 60.7 \pm 2.4 mb \ @ 1.96 \text{ TeV}$$

Reference processes: W->lep,nu

- x-section @ 1.96 TeV ~2.73 nb with ~4% theoretical uncertainty (Eur.Phys.J.C14 (2000) 133-145)
 - ✓ PDF, EWK param, scale variation, higher order corrections
 - √ most likely will improve in future
- \square Expected rate @L=2 10³² ~ 0.5Hz
 - ✓ good for L normalization
- Not trivial:

$$N_{\scriptscriptstyle W} = L \cdot \sigma(p\overline{p} \to WX) \cdot B(W \to e \, \nu) \cdot \varepsilon_{\scriptscriptstyle Et} \cdot \varepsilon_{\scriptscriptstyle E_T,\eta} \cdot \varepsilon_{\scriptscriptstyle Trk} \cdot \varepsilon_{\scriptscriptstyle P_T} \cdot \varepsilon_{\scriptscriptstyle Iso} \cdot \varepsilon_{\scriptscriptstyle ID} \cdot \varepsilon_{\scriptscriptstyle Event} \cdot \varepsilon_{\scriptscriptstyle Trig}$$


- ✓ Trigger+selection efficiency ~25%
- ✓ *Background: QCD, Z→ll, W→\tau \nu,...* \rightarrow 3%-5% sys. error


 $\delta L < 5\%$ is feasible \rightarrow comparable or better than inelastic p-pbar

CDF Summary of W and Z X-Sections

W cross section measurements

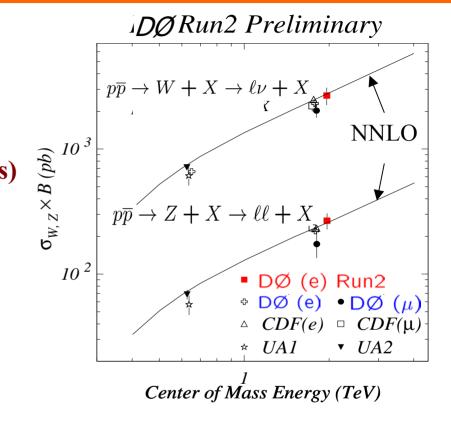
Z cross section measurements

S.Klimenko CTEQ 05/02/03 Fermilab

CDF Combined W and Z Cross Sections

$$\sigma_W = 2.640 \pm 0.012_{\text{stat}} \pm 0.093_{\text{syst}} \pm 0.158_{\text{lum}} \text{ pb}$$

$$\sigma_Z = 251.5 \pm 4.3_{\text{stat}} \pm 10.6_{\text{syst}} \pm 15.1_{\text{lum}} \text{ pb}$$


$$\text{quoted } \delta L/L - 6\%$$

W and Z Production Cross Section (DØ)

W Cross Section (7.5 pb-1)

$$\sigma_{W \to ev} = 2.67 \pm 0.06 \text{ (stat)} \pm 0.33 \text{ (sys)} \\ \pm 0.27 \text{ (lum) nb}$$

quoted $\delta L/L - 10\%$

$$\sigma_{Z \to ee} = 263.8 \pm 6.6 \text{ (stat)} \pm 17.3 \text{ (sys)} \pm 26.4 \text{ (lum) pb}$$

Summary

- □ Run I luminosity uncertainty at ~5% level using inelastic PPbar scattering
- ☐ In Run II two methods of luminosity measurement are available
 - Inelastic Ppbar scattering (on-line, instantaneous, delivered,...)
 - W production
 - Yield comparable uncertainty on luminosity of ~5%
- ☐ Expected luminosity uncertainty in Run II below 5% level
- □ CDF&DØ are working on nailing down the systematic errors
 - Generators, Simulation, material, thresholds, etc. etc.
 - Agreed on value of single diffractive x-section
 - Still working on average inelastic x-section